# LVDT Input Board and Excitation Function Board Part Locations





## Series 8000

**LVDT Input** 

#### **Specifications**

Stability: 0.025% of span/°C

Response Time: 150ms

Repeatability: 0.1% of span Linearity: 0.25% of span

Phase Shift Adjustment: 0°-45° Zero Adjustment: ±15% of span

Span Adjustment: ±15% of span

Input: switch selectable, ±25mV to 2.4V RMS full scale Excitation Voltage: 0.5 to 3.0V RMS, 20mA adjustable Excitation Frequency: selectable, 2.5kHz or 4kHz

Null Sense LEDs: DS1 lights above Null, DS2 lights below Null, both at Null.

LVDT Primary Impedance: min 2.5k $\Omega$ , max 17k $\Omega$ , typical 4k $\Omega$ 

Excitation frequency adjustment: ±15%

For general specification information see the main manual, which provides information for the entire Series 8000.

### **Setup Procedure**

- I. Disassemble the Series 8000 unit as described on page 6 of the main manual.
- II. Remove the LVDT Input Board and Exciter Function Board.
- III. Set the Excitation Function Board and the LVDT Input Board as described below (pages 08-1 and 08-2).
- IV. Calibrate as described on page 08-3.
- V. Reassemble the unit as described in the main manual, pages 4 to 6.

#### Setup Instructions (differential hookup only)

#### **Excitation Function Board**

- Determine the nominal excitation voltage recommended for your LVDT/ application. Set the amplitude potentiometer (R3) to achieve this RMS voltage.
- Select the excitation frequency: 2.5kHz or 4kHz (as recommended by the LVDT manufacturer). Note that the factory setting is 4kHz:

#### Select Excitation Frequency

| Open   |                | Closed       |  |
|--------|----------------|--------------|--|
| 4kHz   | E1, E2, E3, E4 |              |  |
| 2.5kHz | _              | E1-E2, E3-E4 |  |

#### **LVDT Input Board**

1. Determine the full scale input range for your LVDT/application. Close the appropriate SW1 switch (all others should be open) and the input attenuator jumper, E1-E2, if called for in the table.

#### Example

For full scale input with a 1 inch LVDT:

LVDT sensitivity is given in mV per V per 0.001". For an excitation voltage of 1V, this means that for each 0.001 inches of LVDT sensor displacement the output would be 1mV. The total output would be  $1000 \times 1\text{mV} = 1\text{V}$  RMS full scale.

Setup for the above example: Set the excitation voltage to 1V RMS and set the input range to 1.2V RMS, closing switch 2 as shown in the table below and also closing jumper E1-E2.

| Full Scale Input Range<br>(V RMS) | Switch<br>(Closed) | Input Attenuator<br>E1-E2 |
|-----------------------------------|--------------------|---------------------------|
| ±2.40                             | 1                  | Closed                    |
| ±1.20                             | 2                  | Closed                    |
| ±0.80                             | 1                  | Open                      |
| ±0.60                             | 3                  | Closed                    |
| ±0.40                             | 2                  | Open                      |
| ±0.30                             | 4                  | Closed                    |
| ±0.20                             | 3                  | Open                      |
| ±0.15                             | 5                  | Closed                    |
| ±0.10                             | 4                  | Open                      |
| ±0.075                            | 6                  | Closed                    |
| ±0.05                             | 5                  | Open                      |
| ±0.025                            | 6                  | Open                      |

#### Calibration (with sensor)

- 1. Set LVDT to negative full scale (LVDT output in phase with reference and at greatest amplitude).
  - Adjust the zero potentiometer (R-13) for minimum output or 0.000VDC.
- 2. Set LVDT to null. Adjust the span potentiometer (R-17) for mid-scale output or 0.500VDC. Both null indicators should be on at this time.
- Set LVDT to positive full scale (LVDT 180° out of phase with reference).
  Output should be maximum. If it is not, refer to phase adjustment procedure.

#### **Phase Adjustment**

A phase adjustment allows you to adjust the phase control  $\pm 45^{\circ}$  to the phase sensitive demodulator (allowing for varying cable length and transducers). If needed, enable the phase adjust network by opening E3-E4. The standard factory setting leaves this jumper closed, disabling the network.

If you are unable to calibrate for a full scale input, then a phase adjustment might be required.

#### Phase adjustments (using a dual trace oscilloscope)

- 1. Synch on excitation voltage (probe 1 on U5, pin 1).
- 2. Probe 2 on input U4, pin 7.
- 3. Adjust R 24 (jumper E3-E4 open) so that the probe 1 and probe 2 signals are inphase.



### Calibration (without sensor)

This calibration can be done without an LVDT sensor hookup to verify zero and span adjustment.

- 1. Set excitation voltage to match the input range selected. Example: input range = 0.800V RMS. Adjust R3 on the function board to 0.800V RMS as measured at output P1, pin 2 (base socket pin#4).
- 2. Jumper excitation output P1, pin 2 to input P4, pin 2 (base socket pin #9).
- 3. Measure output at P4, pin 1 and adjust zero potentiometer (R13) for 0.000 VDC.
- 4. Remove input and short input P4, pin 3 to P4, pin 2 (base socket pins #9 and #7) together. Adjust span potentiometer R17 for 0.500VDC.
- 5. Remember to set excitation voltage to sensor requirements.